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WEAK AND STRONG LAW RESULTS FOR A FUNCTION OF THE SPACINGS

William P. McCormick

Abstract

Let {U , n>l be i.i.d. uniform on (0,I) random variables and definen

S. -U i=l n where the U. are the order statisticsi,n i ,n-I i-,n-I i ,n-I

from a sample of size n-i and U =0 and U =1. The S. are called
O'n-l n,n-l i,n

the spacings divided by UV ... , Un_ ] . For a fixed integer t, set Mn =

max min S . Exact and weak limit results are obtained for the Mt,n.l<iint i-5jsi+t ~

Further we show that with probability one

(t+l)nMZ,n

n- °  logn

This extends results of Cheng.

Keywords: Order statistic, spacings, limiting distribution, strong law.
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1. Exact distribution.

Let X1,X2 ,..., X be i.i.d. having continuous distribution F. Let t be a fixed

intege- and define a random variable Y ,n max min X.. In this paper we

will determine the exact and limiting distribution of YZ,n' In section 3 these

results are then applied to obtain weak and strong laws for spacings generalizing

previous work of Cheng FS]. Further these results may be of independent interest

and we mention F41 in which a similar analysis has been carried out.

Let X X 2,n X denote the order statistics and define the randomLe l,n X2,n .. n,n

index Rn by Y ,n=XR  If rl,r2 ... rn denote the ranks of XX 2 ... , Xn, it
n,n

is clear that

(1.!) = max min r.Rn lisn-f- tci!5i+/e

Observe that Rn is independent of X l,n,. Xn, n and Rn has the distribution

of the permutation statistic defined by the right hand side of (1.1) with all

permutations equally likely. In the following we take R as defined on the spacen

of permutations of 1,2,...,n. Then Y ,n 4 XR , that is, we have equality in
n,n

distribution.

We introduce some convenient terminology. Define an r-component of a permu-

tation as a collection of consecutive entries each of which is greater than r

and the collection is maximal with respect to this property. The size of an r-

component is defined to be the number of elements in the component. Further let
Bj, . , 3" = Br,neqa

l rn equal the number of permutations on n elements with

exactly Jk r-components of size k and no r-component of size greater than I.

Note

(1.2) #(R nr) = n

where N denotes cardinality and I n r = {j_=(jl,..., je): tit = n - r and jt is
t=1

a nonnegative integer}.

'a-
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may be evaluated by the following elementary counting argument.
First select out of Jt places j, places for 1-components , J2 places for 2-

components,..., j places for t-components. This is done in ( jt)!F4 it!'-1

ways. Next arrange the numbers r+l,...., n in one of (n-r)! ways and the numbers

1,..., r in one of r! ways. Finally choose Y1 Jt spaces among the r+l spaces
r+l

separating the numbers 1..., r. This is done in (ye . ) ways.

Notice that a permutation counted by a jt can be constructed as fol-

lows. Designate the spaces chosen in the last step as being a 1-component, 2-

component,..., or t-component according to the selection made in step 1. In

these spaces make the appropriately sized component by placing the numbers r+l,

n according to the order given them by their permutation. Between these

s components place the numbers 1,..., r in the order given them by their permuta-

tion. This construction is also reversible. Hence

"_ +j_2_______r+l(1.). = 1 1 . jj1 (n-r)lrl( + .+jt).
(1.3 31"' "' Jt 31-32 -"1 '

Therefore by (1.2) and (1.3) we have proved the following.

Theorem 1.1

Let XI,X 2,..., Xn be i.i.d. with continuous distribution F. Thenn

P{Yl,n 5 x ) I P(X x)P(R n r)
r=l ,n

where

(1.4) P{R n r} =(nr)!rj(rl) 1 ,tj tT=n-
jEIn 1 jt!(rl- jt) n-r 1

Remark: Note Theorem 1.1 remains true if the X. are assumed only to be exchange-1

able.

The distribution of Y1,n can be obtained in another way which yields a simpler

expression than that given in Theorem 1.1. For A cfl,2,...., n} let M(A) =

max{X., iEAl and W(A) = min{X i., iEA} with the convention W(O) ==. Let Ek,t1 1 K,4
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equal the class of all k element subsets of {1,2,..., n} which do not contain

an interval of length greater than t. Then

n n kn-k
(1.5) P{Y <X}= X P{W(A)>x, M(AC) <xl= #(Ek ,)(l-F(X)) F (x)

k=O AEEkE k=O

To evaluate #(Ek,) we partition Ek, into the following sets. Let .

be the class of all k element subsets of {Il ..., n} containing ji intervals of

length i and no interval of length greater than t. Then

(1.6) #(E k't) J #(3 j l ... Pj "

#(S. . ) is obtained by the following counting argument. Consider

n-k blocks into which integers will be put and the n-k+l spaces between theI
blocks. Among these n-k+l spaces choose j to be designated as a single element

space, J2 for a two element space,..., i for an e-element space. Then a k ele-

ment subset of { n}.... n} belonging to 3. is obtained by writing the

numbers 1 to n in their natural order putting one integer in each of the n-k

blocks and ji consecutive integers in a space designated as an i-element space.

The k-element set is then obtained by choosing the numbers put into the spaces.

Hence

(n-k+l)!

..... I1 Jt !(n-k+l-4 j

Theorem 1.2

Under the assumptions of Theorem 1.1 we have

=n (n-k+l)!(I-F (x)) kFn-k (x)
(1.8) P{I x - k=• jE (n-k+lE1jt

If the X. are assumed only to be exchangeable and F(k) (x)= P{W(A)>x,M(Ac)sx)
1

where A c {l...., ni is any k element subset then
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n iF(k)(1n ~(n-k+l) F (x)(1.9) ply t,n! X-  = I I
k=0 jEl k Z1" Jt Jtnk~E -

Proof: (1.8) is immediate from (1.5), (1.6), and (1.7) while (1.9) follows for

the same reasons except that in (1.5) the expression (1-F(x))k F n-k(x) is re-

placed by F(k)(x).

2. Limiting distribution

In this section we derive the asymptotic behavior of Y ,n" Preliminary to

this work we obtain an asymptotic result for the permutation statistic R . Inn

our analysis we rely on a method for obtaining the asymptotic behavior of sums

with positive terms. A description of this tool may be found in the expository

paper r31.

Lemma 2.1

Let Rn be the permutation statistic defined in (1.1) and having distribution

given in (1.4). Then

r n-R r0 x< 0
(2.1) lim P -- n e- i

, In 5X1t 1 -'x jn- n l-e ,x_

Proof: In order to obtain the asymptotic behavior of the sum in (1.4) we first

locate the maximum summand and introduce a change of variables so that the largest

term occurs at the zero point.

Observe that if j*,..., j* are defined as the solution to the equations

j* + 2j* +...+tj*=n-r

(2.2)

(j) = j*(r- j*- ... j)- , t=2,3,..., F

then the maximum summand in (1.4) occurs in a suitable neighborhood of

Let h. = ,t i=2,..., I and j, = + x.h, i=2,..., t where x. is a fractional

index with step size (hi) 1 . Making the change of variables in (1.4) and restric-

ting attention to a neighborhood of the maximum summand, we consider



-5-

(2.3) (n-r)!r!(r+l)! e h()tt(2.3)Y~rT~j*+ h )(n-r-Xtj- tx h )!I
n! 2 t 2 t ct

t t ]-1
• F(r+l-Y(t-l)j*+ (t-1)xtht

2 t 2

where the summation is over the x. such that x. has step size h:1 and max Ix I-<A
1 1 a 2<i<

where A is a fixed positive constant. Then with max Ixij -1A, Stirling's formula
2!5i<5

and (2.2) we have

t 1 J t  -(t-1)J t

j ! = ( 1 ) (r-j{-...-j ) t h 2i-

Sx -(I+0(. ) expfj t F n(l+ h 11). .,I

3t t

Similarly

J i (J*) l/'2irj*(lO())expJ 2ren(1-

22
2x 0(x 3

Therefore using (2.2) and tn(l+x =x--- + ) as x 0 it can be checked that

IjT = (j.)mexp{ x2 
- + 1+ +2)

I 2 1 t 1

ii r (r- t )-) h V2-T1 /ijT(1+0(.l)
t=2 t=l t

where m=n-r.

Therefore we find the expression at (2.3) equals

(2.4) exp{myn(- ) + 2rtn(l + +ntn(l - )

t n1 I*e " 2 t

2 t

Since the xi have step size hi we have

2-E 2 2x 2

e r 1 = e 1dxl - 1  as n OD

2 T 27
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so that it suffices to consider

(2.5) exp{me!n( ) + 2rtn(1 +-.--) +ntn(i ___

31 r-Y,1j*

Let x - -- an £=- m--- Then by (2.2) we have

(2.6) tx C

For f(x) = LKO akx k +R(x) with R(x) = O(x K1I) as x -~ 0, let lff(x)lr = ak

0-5r K. Using (2.6) we observe

m CI t t t+i -2t+
(2.7) -- ~=) (t+l)x - (t+l)x - (t+2)x r(I-X) 1 -(R+Hx -(Z+2)x

(2.8) (l+)l t2 ( + xt 2) I_)-1 2 + ~ +

(2.9) 1- I+~j [+F-+ Xt1 -l Y (t+l)x t)- (r (l-x)- 2 1~ -2) e+i I

t =0

Therefore by (2.7), (2.8), and (2.9) we see that (2.5) can be written

expfmtn(F (I-x)- 2 I~ tlx P+) ~

ren([(l-x)- It+i - 2x f+ +0(,,e))

-nn(rl-x)- 2 - (t+2)x t ))

-x{(~lm - 2r( I +

r- j* r-Efj-

rW+mO (~

I tt

Mod"j
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! zl

By taking m=xn we have that m-1 , r-n, as n o. Hence (2.10) is

asymptotic to

1

(2.11) expxZ+ 1 +O(n ]-'

Finally outside the neighborhood of the maximum summand we have that

(n-r)!r!(r+l)! *  e I1** 11 (j*+xh)!(n-r-Y tt--txh

t=2

- X

(2.12) -e rl-rA ' - dx) as n c
-2T

where )* denotes the summation over the xi such that xi has step h. and

max jxij >. Hence Lemma 2.1 holds by (2.11) and (2.12).

Lemma 2.1 and results of Balkema and de Haan F] and F21 allow us information

on the asymptotic behavior of Y ,n even when classical extreme value theory does

not apply. However, we must allow random normalization in the following weak

limit results. Since the proofs of Theorem 2.1 andTheorem 2.2 are the same as

the proofs of Proposition 6 and Proposition 8 of F41, we give only statements of

the Theorems.

Theorem 2.1

Let XI,X 2,... be an i.i.d. sequence with distribution F satisfying

(i) F(x) < 1 , _oo<x<cn

(ii) F(ru)-F(u) Xlogr , O<r<,m
f-+2

(l-F(u)) 2

XR

as u - m for some X > 0. Let Z n,n where f denotes the right continuous
n
n

inverse of F. Then
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lrn z} = f' 4(w 2  nz)(t+l)w e-w dw O<z<o
n- 2

U

where D(x) = fx 0 e 2 du.

Remark: It can be checked that the hypothesis of Theorem 2.1 is satisfied for

F of the form F(x) =1 -c(fnx) -(2/) for x large. By classical results in extreme

value theory, such distributions do not belong to the domain of attraction of any

extreme value distribution.

Theorem 2.2

Let F be a distribution function with upper endpoint y1 which has a strictly

positive density F'(y) =eu(y) for y in a left neighborhood of y1 " Suppose F

satisfies one of the following conditions:

(i) 1- F(y') -1 -F(y) for y - y1 implies F'(y') ~F'(y),

(ii) F"(y)(1-F(y)) is bounded in a left neighborhood of Yl
(F (y)) 2

(iii) F' varies regularly in yl- with exponent p -l,

(iv) limsup 1"(y) 2 < 1 or liminf u"(y) > 1

Y Yl- (u'(y)) Y Y1- (u(y))

Then if f denotes the right continuous inverse of F, we have

R
n

lim P{ f-, ) n x} =D(x) ,-e<x<n.R Rn(n-Rn) R xl)(x
n f( Rn R n (nn n

n 3 nn

Remark: The conditions of Theorem 2.2 are satisfied for the normal, Laplace,

Cauchy, beta, gamma distributions and all limit distributions for extreme order

statistics Xk,n with k fixed or n-k fixed.

Let V. = min X., i=l... n-. Then Y = max V. and the V. form
1 i~jsi+f. J Zn li!n-?- 1 1

an t-dependent stationary sequence, that is V. and Vj are independent if li-j[> t.
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Extreme value theory for dependent stationary sequences has received considerable

attention. A basic result which relates the asymptotic behavior of the maximum

of a stationary sequence to the asymptotic behavior of the maximum of the associa-

ted i.i.d. sequence is the following:

Let {n nl} be a stationary sequence and let F. (x) = P{Ei _x. ... -x}.
1 n 1 n

Condition D(un) is said to hold if for any integers 1<i l<.. .<ip< 1 <...<j !n with
n P q

Jl-i ?Z we haveP

•" (Un- Fi i (U)F (u n )

1i''' p ..'' q n 1'' p '. 'Jq - n

where rn, n= o(1) for some sequence Zn= o(n). Condition D'(u ) is said to hold

for the stationary sequence {,n' n-!I} if

fn/kI
lim n/k. P{Pl >u I.j>u} - 0 as k - ,.
n-, j=2

In r 7 1 it is shown (Theorem 3.5.2) that if M = max F i and A= max ,. where
1 i n  n lisn

the ). are i.i.d. with the same underlying distribution as the Ei then if for

every x conditions D(u) and D'(u ) hold where un = x/a + b , a >0, we have

im PM - -+b } = G(x) , -x-
n a n

n- -°  n

if and only if

1MPA <X +
1r PM -<--b } = G(x) , -<x .n a n

n co n

Therefore in view of the above result the asymptotic behavior of the max v.I

will be exactly the same as if the vi were independent once D(u n ) and D'(u n) have
1 n +01 asn ii hr

been established where un is determined by (1-F(un)) = +0() as n where
nnn n

F is the underlying distribution of the X.. Such a sequence {u n , n-l} exists

for F belonging to the domain of attraction of an extreme value distribution.

Finally the verification of Conditions D(un) and D'(u n) is easy.

n1
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In order to establish a strong law result in section 3 we need the following

result.

Theorem 2.3

Let {X, nl be an i.i.d. sequence with underlying distribution F. Let

Y e max min X.. If x is any sequence such that n(I-F(xn )/ +2 = 0(1)Y/n-l_<ine i_<j<i+e j n

then

P {Y ,n Xn = (1 +O(n(l-F(xn ) )

+ 0(n[l-F(x ]R+2 )exp{-n(1-F(Xn))1

Proof: Since the technique to obtain the asymptotic behavior of Y ,n is the

same as the one used for Rn, we present a sketch only. In order to obtain the

asymptotic behavior for

H(x) = (r+l)!(1-F(x)) n-r(F(x))
r

(j, r)cJ j~jt ! (r+-Z lt

where J = {(j,r): O-!j , r, t=l,2,.,., R and Z tit =n-rI, we find that the maxi-
nt 1 h a

mum summand occurs in a neighborhood of the point (i*,r*) satisfying

(i) , tj = n-r*

(2.13) (ii) (j*)t =(jt)(r* - i*)(t-l) t2..

1
t

(iii) rjl t) Y
1

where ct=F(x)(l-F(x)) - 1

By the usual calculations we find that

e
( i n ¢ r n / 2,

(2.14) H(x) = ( n

Let u = cj*/r*. Then by (2.13 ii) we find that j*/j*= (u/i)(t -l) so that.. t I

from (2.13 iii) u = (u - t (u/c) t) which implies (I + 1)u- (u/a) 1 +1

O(-(t+2) ) =1. Hence
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(2.15) u--- +(I+ c(t+l)

By (2.14) and (2.15) we find

H(x) = (1 +O(n- Ia))

exp{ntn(1-L ) - nfn (-a + (1 +a)- (+l) + O(c-(t+2))1
1 +cxt) (

= (I + 0 ( 0 n(-(e+2)exp{-n(l +(t)- {f +1 )

proving Theorem 2.3.

3. Weak and Strong Laws for Spacings.

In this sectic 4e derive weak and strong law results for a particular function

of the spacings. Let {U , n'-l} be i.i.d. uniform on (0,1) random variables. Let

U1 , n<'.'-U n,n be the order statistics for U1 ,..., U n. Then the random variables

S in+ = U. -U i=l .... n+l are called the spacings divided by U ... U ni1~ i,n il1,n' 'n

where UO,n =0 and ll ,n = .

Let M max min S.,n+ The quantity M1  played a role inMe,n+I lsi_<n+l_4 i! j!i+f_ n ,n

the work of Marron r8i and Chow, Geman and Wu F61 in cross-validated kernel den-

sity estimation. Statistical properties of Ml ,n were analyzed in Cheng FS1.

Our first result gives the exact distribution of M ,n .

Theorem 3.1

n (n-k+l)! n-k (_t(n-k i }n-I
- k=0 jcIk Rijt ,(n+l k _' l-j t) ! t=0 (

where x =x if x>O or=O if x<-0.

Proof: The result follows from Theorem 1.2 and the fact that

P{S1In S k,n >X kl,n<-5X"" .. S n,n S x)
,>x,..., kn>x, Sk 1  -x .. ,Snx

n-k n-1

w(hI)ich w s {rl -(k +t)x l , p 3
t=0

which was shown in FSj, p. 3.
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To obtain an asymptotic result for Me,n the following representation will

be useful.

Lemma 3.1 (Pyke) Let {Xn, nil} be i.i.d. exponential random variable with mean

one. Let T = E2 X Then
n =1 I i

(S S .. S )(X 1/Tn, X2/Tn ... Xn /T n).

Theorem 3.2

x+,enn -x X0
lim P{M < 'Wn(e = exp(-e-) "

Proof- Let Z = max min X. where the X. are i.i.d., X 1 -eX, and
rn l~i!n-t i!jsi+/ 3 i= n

let Tn 71 X Then by Lemma 3.1 we have

x+fnn) Ze,n <x+nn

-e~ (,+l)n' Tn r~n

But ((T n/n) - l)/nn P 1 as n . See F51, p. 7. Therefore it suffices to consider

P{z/ , (x + /nn)r I+ }n~ 
+

P{Z n aif n 'gvnb

Since the variables W m n i satisfy D(un) and D'(u n) with u given by
-1glu e-nXT

P{W. >u } =e n , we have that the limiting distribution of Zn is the

same as if the variables W. were independent. Hence the Theorem holds. Alterna-
1

tively we may apply Theorem 2.3 with x =(l/(t+l)) (x+tnn).

Finally we conclude with a strong law result for the spacings. With Theorem

2.3 established it is easy to check that the method of proof of Theorem 4.8 in

rS1 carries over with obvious modifications to the present case. Therefore, we

only state the result

Theorem 3.3

With probability one
(e+l)nlM ,

l i m 
= 1

n-m logn
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